Protease inhibitors and azolic antifungals in HIV patients with histoplasmosis: a clinical pharmacokinetics perspective.

نویسنده

  • Lucas Miyake Okumura
چکیده

A previous in vitro investigation found that a sinergistic effect might occur, when using itraconazole (ITRA) and ritonavir (RTV) against Histoplasma capsulatum,1 where an interesting mechanism of action was proposed. However, relevant pharmacokinetic (PK) issues were under explored. Herein, this letter attempts to deepen a clinical PK discussion not performed by Brilhante and colleagues.1 Firstly, the in vitro model1 did not account for drug penetration in macrophages, given that Histoplasma spp. are found as intracellular microorganisms after innate immunity recognition and phagocytation.2 Secondly, one should recognize the potential CYP3A4 competitive inhibition when using RTV and an azolic agent. By combining them, we expect an elevated plasma concentration of the azolic agent,3 as RTV has higher affinity to the aforementioned phase 1 enzyme, but not the opposite.1 The association of both drugs is a possible scenario4 when treating multiple drug resistant HIV infected patients. Whether non-CYP3A4 substrates are unavailable, clinicians should attempt to monitoring hepatic enzymes and random ITRA steady state serum concentrations (>1 g/mL) after 7–15 days.3 Finally, the previous report1 discussed that using both drugs might be clinically possible by “reducing itraconazole dose”. For several reasons,5 there is no evidence on lowering ITRA doses: (a) it has an erratic gastrointestinal absorption and food composition and gastric pH might influence drug’s bioavailability (cyclodextrin-containing formulations are preferred); (b) ITRA has non-linear PK, thus, dose reductions may lead to unpredictable serum levels (zero order kinetics is dependent on enzyme saturation).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE DESIGN, MODELING AND EVALUATION OF POTENTIAL HIV PROTEASE INHIBITORS USING BLITZ, AN INTERACTIVE COMPUTER GRAPHICS WORKING TOOL

Several nonpeptide small molecules were designed as potential inhibitors of HIV protease and their structures were constructed by computer-aided molecular modeling and docked iwo the active site of HIV protease. Models of the complexes of inhibitors and the HIV protease were refined using nonbonded and H-bonding terms. The refined energy of selected complexes showed that the designed inhib...

متن کامل

Current antiretroviral drugs for human immunodeficiency virus infection: review article

Currently, there are about 37 million people worldwide living with human immunodeficiency virus (HIV) /AIDS, with an estimated two million new cases per year globally. According to estimates from the World Health Organization (WHO), only 75% of the population with HIV know their status. Initially, HIV infection was associated with significantly increased rates of mortality and morbidity. Howeve...

متن کامل

Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach

Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this st...

متن کامل

Screening Efficacy of Available HIV Protease Inhibitors on COVID-19 Protease

Background and Aim: Advent of COVID-19 attracted the attentions of researchers to develop drugs for its treatment. Besides efforts on developing new drugs, screening available drugs for efficacy on COVID-19 could be an urgent action of initiating its pharmacotherapy. In this study, efficacy of HIV protease inhibitors on COVID-19 protease has been examined. Methods: Molecular docking based scree...

متن کامل

Design of new potent HTLV-1 protease inhibitors: in silico study

HTLV-1 and HIV-1 are two major causes for severe T-cell leukemia disease and acquired immune deficiency syndrome (AIDS). HTLV-1 protease, a member of aspartic acid protease family, plays important roles in maturation during virus replication cycle. The impairment of these proteases results in uninfectious HTLV-1virions.Similar to HIV-1protease deliberate mutations that confer drug resistance on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Brazilian journal of infectious diseases : an official publication of the Brazilian Society of Infectious Diseases

دوره 20 4  شماره 

صفحات  -

تاریخ انتشار 2016